Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
نویسندگان
چکیده
Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgU(A61V)). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgU(A61V), 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ(70)). Induction of AlgU(A61V) in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgU(A61V) is functional in activating alginate production. Furthermore, the level of AlgU(A61V) was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgU(A61V) had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ(70) orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (PssrA ) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ(70) factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD.
منابع مشابه
Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity.
Alginate production in Pseudomonas aeruginosa and the associated mucoid phenotype of isolates from cystic fibrosis patients are under the control of the algU mucABCD cluster. This group of genes encodes AlgU, the P. aeruginosa equivalent of the extreme heat shock sigma factor sigma E in Gram-negative bacteria, the AlgU-cognate anti-sigma factor MucA, the periplasmic protein MucB and a serine pr...
متن کاملRole of Azotobacter vinelandii mucA and mucC gene products in alginate production.
Azotobacter vinelandii produces the exopolysaccharide alginate, which is essential for its differentiation to desiccation-resistant cysts. In different bacterial species, the alternative sigma factor sigma(E) regulates the expression of functions related to the extracytoplasmic compartments. In A. vinelandii and Pseudomonas aeruginosa, the sigma(E) factor (AlgU) is essential for alginate produc...
متن کاملPseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity.
Alginate overproduction in Pseudomonas aeruginosa can be caused by the proteolysis of the anti-sigma factor MucA regulated by the AlgW protease. Here, we show that inactivation of MucD, an HtrA/DegP homolog and alginate regulator, can bypass AlgW, leading to an atypical proteolysis of MucA that is dependent on the MucP protease.
متن کاملMicrobial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.
Conversion of Pseudomonas aeruginosa to the mucoid phenotype plays a major role in the pathogenesis of respiratory infections in cystic fibrosis (CF). One mechanism responsible for mucoidy is based on mutations that inactivate the anti-sigma factor, MucA, which normally inhibits the alternative sigma factor, AIgU. The loss of MucA allows AIgU to freely direct transcription of the genes responsi...
متن کاملDual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism.
The conversion to mucoid, exopolysaccharide alginate-overproducing phenotype in Pseudomonas aeruginosa during chronic respiratory infections in cystic fibrosis patients occurs via mutations that activate the alternative sigma factor AlgU (sigmaE). In this study, we demonstrate that conversion to mucoidy can be caused via a second, algU-independent pathway, in which alginate production and trans...
متن کامل